ETRO VUB
About ETRO  |  News  |  Events  |  Vacancies  |  Contact  
Home Research Education Industry Publications About ETRO

ETRO Publications

Full Details

Journal Publication

Semi-Supervised Deep Learning Classification for Hyperspectral Image Based on Dual-Strategy Sample Selection

This publication appears in: Remote Sensing

Authors: B. Fang, Y. Li, H. Zhang and J. C-W Chan

Volume: 10

Issue: 4

Pages: 1-23

Publication Date: Apr. 2018


Abstract:

This paper studies the classification problem of hyperspectral image (HSI). Inspired by the great success of deep neural networks in Artificial Intelligence (AI), researchers have proposed different deep learning based algorithms to improve the performance of hyperspectral classification. However, deep learning based algorithms always require a large-scale annotated dataset to provide sufficient training. To address this problem, we propose a semi-supervised deep learning framework based on the residual networks (ResNets), which use very limited labeled data supplemented by abundant unlabeled data. The core of our framework is a novel dual-strategy sample selection co-training algorithm, which can successfully guide ResNets to learn from the unlabeled data by making full use of the complementary cues of the spectral and spatial features in HSI classification. Experiments on the benchmark HSI dataset and real HSI dataset demonstrate that, with a small number of training data, our approach achieves competitive performance with maximum improvement of 41% (compare with traditional convolutional neural network (CNN) with 5 initial training samples per class on Indian Pines dataset) for HSI classification as compared with the results from those state-of-the-art supervised and semi-supervised methods.

Other Reference Styles
Current ETRO Authors

Prof. Dr. Jonathan C-W Chan

+32 (0)02 629 128

jcheungw@etrovub.be

more info

Other Publications

• Journal publications

IRIS • LAMI • AVSP

• Conference publications

IRIS • LAMI • AVSP

• Book publications

IRIS • LAMI • AVSP

• Reports

IRIS • LAMI • AVSP

• Laymen publications

IRIS • LAMI • AVSP

• PhD Theses

Search ETRO Publications

Author:

Keyword:  

Type:








- Contact person

- IRIS

- AVSP

- LAMI

- Contact person

- Thesis proposals

- ETRO Courses

- Contact person

- Spin-offs

- Know How

- Journals

- Conferences

- Books

- Vacancies

- News

- Events

- Press

Contact

ETRO Department

info@etro.vub.ac.be

Tel: +32 2 629 29 30

©2019 • Vrije Universiteit Brussel • ETRO Dept. • Pleinlaan 2 • 1050 Brussels • Tel: +32 2 629 2930 (secretariat) • Fax: +32 2 629 2883 • WebmasterDisclaimer