Member
Publications
 
 
 
Filter by  
 
No filters to apply.
 
2024 
Semi-supervised medical image classification via distance correlation minimization and graph attention regularization

Diaz Berenguer, A , Kvasnytsia, M , Bossa Bossa, MN , Mukherjee, T , Deligiannis, N & Sahli, H 2024, ' Semi-supervised medical image classification via distance correlation minimization and graph attention regularization ', Medical Image Analysis , vol. 94, 103107, pp. 1-16.

 
2023 
Representation Learning with Information Theory to Detect COVID-19 and its Severity

Diaz Berenguer, A , Mukherjee, T , Da, Y , Bossa Bossa, MN , Kvasnytsia, M , Vandemeulebroucke, J , Deligiannis, N & Sahli, H 2023, Representation Learning with Information Theory to Detect COVID-19 and its Severity . in L Karlinsky, T Michaeli & K Nishino (eds), Lecture Notes in Computer Science: Computer Vision – ECCV 2022 Workshops. vol. 13807, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 13807 LNCS, Springer, Cham, pp. 605-620.

COVID-19 Lesion Segmentation Framework for the Contrast-Enhanced CT in the Absence of Contrast-Enhanced CT Annotations

Kvasnytsia, M , Berenguer, AD , Sahli, H & Vandemeulebroucke, J 2023, COVID-19 Lesion Segmentation Framework for the Contrast-Enhanced CT in the Absence of Contrast-Enhanced CT Annotations . in Z Xue, S Antani, G Zamzmi, F Yang, S Rajaraman, Z Liang, SX Huang & MG Linguraru (eds), Medical Image Learning with Limited and Noisy Data. vol. 14307, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 14307 LNCS, Lecture Notes in Computer Science, Springer, pp. 71-81.

 
2020 
Explainable-by-design Semi-Supervised Representation Learning for COVID-19 Diagnosis from CT Imaging

Berenguer, AD , Sahli, H , Joukovsky, B , Kvasnytsia, M , Dirks, I , Alioscha-Perez, M , Deligiannis, N , Gonidakis, P , Sánchez, SA , Brahimetaj, R , Papavasileiou, E , Chana, JC-W, Li, F, Song, S, Yang, Y, Tilborghs, S, Willems, S, Eelbode, T, Bertels, J, Vandermeulen, D, Maes, F, Suetens, P, Fidon, L, Vercauteren, T, Robben, D, Brys, A , Smeets, D , Ilsen, B , Buls, N , Watté, N , Mey, JD , Snoeckx, A, Parizel, PM, Guiot, J, Deprez, L, Meunier, P, Gryspeerdt, S , Smet, KD , Jansen, B & Vandemeulebroucke, J 2020, ' Explainable-by-design Semi-Supervised Representation Learning for COVID-19 Diagnosis from CT Imaging ', ArXiv.org , vol. 2020.

Multi-atlas segmentation of the skeleton from whole-body MRI—Impact of iterative background masking

Ceranka, JW , Verga, S , Kvasnytsia, M , Lecouvet, F, Michoux, N , De Mey, J , Raeymaekers, H , Metens, T & Vandemeulebroucke, J 2020, ' Multi-atlas segmentation of the skeleton from whole-body MRI—Impact of iterative background masking ', Magnetic Resonance in Medicine , vol. 83, no. 5, pp. 1851-1862.