1 Image Analysis: Intermediate Level Vision 3 Jan Cornelis, Aneta Markova and Rudi Deklerck 1.1 Introduction: Segmentation defined in the context of intermediate level vision 3 1.2 Pixel and Regionbased segmentation 5 1.2.1 Examples of supervised approaches 6 1.2.2 Examples of unsupervised approaches 7 1.2.3 Improving the connectivity of the classification results 10 1.3 Edgebased Segmentation 11 1.4 Deformable models 15 1.4.1 Mathematical Formulation (Continuous case) 16 1.4.2 Mathematical Formulation (The discrete case) 18 1.4.3 Applications of active contours 20 1.4.4 The behaviour of snakes 21 1.5 Modelbased Segmentation 24 1.5.1 Statistical Labeling 24 1.5.2 Bayesian Decision Theory 24 1.5.3 Graphs and Markov Random Fields defined on a graph 25 1.5.4 Cliques 26 1.5.5 Models for the priors 26 1.5.6 Labeling in a Bayesian framework based onMarkov Random fieldmodelling 27 1.5.7 Examples 27
Cornelis, J, Markova, A & Deklerck, R 2011, Image Analysis: Intermediate-Level Vision. in G Cristobal, P Schelkens & H Thienpont (eds), Optical Digital Image Processing,. Blackwell-Wiley, pp. 643-666.
Cornelis, J., Markova, A., & Deklerck, R. (2011). Image Analysis: Intermediate-Level Vision. In G. Cristobal, P. Schelkens, & H. Thienpont (Eds.), Optical Digital Image Processing, (pp. 643-666). Blackwell-Wiley.
@inbook{bb406cd4d35a498ca66e366172d351ec,
title = "Image Analysis: Intermediate-Level Vision",
abstract = "1 Image Analysis: Intermediate Level Vision 3 Jan Cornelis, Aneta Markova and Rudi Deklerck 1.1 Introduction: Segmentation defined in the context of intermediate level vision 3 1.2 Pixel and Regionbased segmentation 5 1.2.1 Examples of supervised approaches 6 1.2.2 Examples of unsupervised approaches 7 1.2.3 Improving the connectivity of the classification results 10 1.3 Edgebased Segmentation 11 1.4 Deformable models 15 1.4.1 Mathematical Formulation (Continuous case) 16 1.4.2 Mathematical Formulation (The discrete case) 18 1.4.3 Applications of active contours 20 1.4.4 The behaviour of snakes 21 1.5 Modelbased Segmentation 24 1.5.1 Statistical Labeling 24 1.5.2 Bayesian Decision Theory 24 1.5.3 Graphs and Markov Random Fields defined on a graph 25 1.5.4 Cliques 26 1.5.5 Models for the priors 26 1.5.6 Labeling in a Bayesian framework based onMarkov Random fieldmodelling 27 1.5.7 Examples 27",
keywords = "Image Analysis, Image segmentation, Intermediate Level Vision, Markov Random Fields",
author = "Jan Cornelis and Aneta Markova and Rudi Deklerck",
note = "G. Cristobal, P. Schelkens, H. Thienpont",
year = "2011",
month = apr,
language = "English",
isbn = "978-3-527-40956-3",
pages = "643--666",
editor = "G. Cristobal and P. Schelkens and H. Thienpont",
booktitle = "Optical Digital Image Processing,",
publisher = "Blackwell-Wiley",
}