Publication Details
Overview
 
 
Kaidong Wang, Yao Wang, Xile Zhao, Jonathan C-W Chan, Zongben Xu, Deyu Meng
 

IEEE Transactions on Geoscience and Remote Sensing

Contribution To Journal

Abstract 

Hyperspectral (HS) imaging has shown its superiority in many real applications. However, it is usually difficult to obtain high-resolution (HR) HS images through existing imaging techniques due to the hardware limitations. To improve the spatial resolution of HS images, this article proposes an effective HS-multispectral (HS-MS) image fusion method by combining the ideas of nonlocal low-rank tensor modeling and spectral unmixing. To be more precise, instead of unfolding the HS image into a matrix as done in the literature, we directly represent it as a tensor, then a designed nonlocal Tucker decomposition is used to model its underlying spatial-spectral correlation and the spatial self-similarity. The MS image serves mainly as a data constraint to maintain spatial consistency. To further reduce the spectral distortions in spatial enhancement, endmembers, and abundances from the spectral are used for spectral regularization. An efficient algorithm based on the alternating direction method of multipliers (ADMM) is developed to solve the resulting model. Extensive experiments on four HS image data sets demonstrate the superiority of the proposed method over several state-of-the-art HS-MS image fusion methods.

Reference 
 
 
DOI scopus