Expertise Trees Resolve Knowledge Limitations in Collective Decision-Making
 
Expertise Trees Resolve Knowledge Limitations in Collective Decision-Making 
 
Axel Abels, Tom Lenaerts, Vito Trianni, Ann Nowe
 
Abstract 

Experts advising decision-makers are likely to display expertise which varies as a function of the problem instance. In practice, this may lead to sub-optimal or discriminatory decisions against minority cases. In this work, we model such changes in depth and breadth of knowledge as a partitioning of the problem space into regions of differing expertise. We provide here new algorithms that explicitly consider and adapt to the relationship between problem instances and experts{\textquoteright} knowledge. We first propose and highlight the drawbacks of a naive approach based on nearest neighbor queries. To address these drawbacks we then introduce a novel algorithm — expertise trees — that constructs decision trees enabling the learner to select appropriate models. We provide theoretical insights and empirically validate the improved performance of our novel approach on a range of problems for which existing methods proved to be inadequate.