News
Ron Cottam is editing two special issues
 
 

Fundamentals of evolutionary transformations in biological systems. Special Issue of the journal BioSystems, with Giuseppe Iurato and Abir Igamberdiev

       The relation between genetic and epigenetic factors is central to the concept of biological evolution. In early 19th century, the concept that major evolutionary changes are related to rescaling of embryogenesis was formulated by Étienne Geoffroy Saint-Hilaire and reintroduced in more detail by Karl Ernst von Baer who suggested that evolution is based on organism’s interpretation of itself in a dynamic environment and on persistence of these interpretations over generations. In recent years, we observe a transition from the view that the genetic factors are the sole source for biological inheritance and transformation to the broader understanding that, in addition to the mutational process and natural selection, other factors, in particular those associated with alterations in development and morphogenesis, determine the evolutionary process. This means that epigenetic effects can trigger many aspects of biological evolution. The contextual readout of DNA represents an important feature of the evolutionary change that determines consequent transformation and complexification of biological systems. The fundamental mathematical principles operating in living systems and constituting the basis for epigenetic transformation and evolutionary expansion require clarification and further substantiation on the basis of novel findings and discoveries. The issue is dedicated to one of the first evolutionary biologists Étienne Geoffroy Saint-Hilaire on the occasion of his 250th birthday.

https://www.sciencedirect.com/journal/biosystems/special-issue/10FRKKW4VHK

Complexity, Chaos and Computation in Living Systems. Special Issue in Entropy

Complexity, chaos and computation in biology may be characterised in terms of entropy, but is this most closely related to the criterion of order, or more correctly to the concept of ‘unification’ of an entity? Clausius’ description of entropy in terms of ‘disgregation’, or disassociation of parts, suggests that the latter would be more relevant to biology, in the sense that a viable and therefore  ‘highly unified’ organism, exhibiting comparatively low entropy, could be compared to one suffering from a degree of disorganisation (sickness?), exhibiting comparatively higher entropy. It is notable that the holistic concept of ‘unification’, integrating both reductive top-down character and non-reductive (partially emergent) bottom-up character, is completely absent from conventional science.

Submissions are invited relative to all or a part of these questions.

https://www.mdpi.com/journal/entropy/special_issues/Chaos_Living

 
 
Related content 
 
 
...
Congratulations PengPeng Hu
  News
12 October 2022
...
New FWO Grants
  News
11 October 2022
...
FWO PhD Grants in Interpretable Deep Learning
  News
11 October 2022