Jeroen Van Schependom is associate professor at the department of Electronics and Informatics (ETRO) and the AI supported modelling in clinical sciences (AIMS) at Vrije Universiteit Brussel. He works on the development of novel biomarkers for cognitive impairment, mainly for multiple sclerosis and Alzheimerās disease, and explores novel treatments.
Neurophysiological signal processing
The billions of neurons inside our brain all produce tiny electrical currents. Using electroencephalography (EEG) or magnetoencephalography (MEG) we can measure the effects of the coordinated activity of millions of neurons as electrical potential differences on the skull (EEG) or as emerging magnetic fields (MEG). We know that these signals allow us to differentiate between āhealthyā brains and people affected by multiple sclerosis or Alzheimerās disease. However, it is more difficult to extract a biomarker for cognitive functioning. That is why we are looking into novel dynamic approaches to describe ongoing brain activity.
Magnetic resonance imaging
Next to the brainās electrical activity, we also take into account how it looks by taking 3D photographs in MRI scans. These scans are standardized in clinical practice and even help in the diagnosis of multiple sclerosis. However, novel developments are on the horizon driven by developments in machine learning, the availability of large datasets and novel acquisition paradigms.
Biomarker development
By combining the information we extract from EEG/MEG with information on how the brain looks, we aim at developing novel biomarkers for cognitive impairment and deterioration in MS and Alzheimerās disease.
Electrical stimulation as a novel treatment paradigm
An exciting new treatment strategy may be the application of weak electrical fields on the human scalp by transcranial alternating current stimulation (tACS). It has already been shown in mice that the stimulation of a specific type of neuron enhances myelination and can thus provide a treatment for demyelinating diseases such as MS and AD. By developing in-house electronics and through (pre-)clinical research studies, we aim at exploring the capabilities of tACS as an alternative add-on treatment for MS.