Publication Details
Overview
 
 
Nicolas F Michoux, Jakub Ceranka, Jef Vandemeulebroucke, Frank Peeters, Pierre Lu, Julie Absil, Perrine Triqueneaux, Laurence Collette, Yan Liu, Inneke Willekens, Carola Brussaard, Olivier Debeir, Stephan Hahn, Hubert Raeymaekers, De Mey, Johan, Thierry Metens, Frédéric E Lecouvet
 

European Radiology

Contribution To Journal

Abstract 

OBJECTIVES: Multicenter oncology trials increasingly include MRI examinations with apparent diffusion coefficient (ADC) quantification for lesion characterization and follow-up. However, the repeatability and reproducibility (R&R) limits above which a true change in ADC can be considered relevant are poorly defined. This study assessed these limits in a standardized whole-body (WB)-MRI protocol.METHODS: A prospective, multicenter study was performed at three centers equipped with the same 3.0-T scanners to test a WB-MRI protocol including diffusion-weighted imaging (DWI). Eight healthy volunteers per center were enrolled to undergo test and retest examinations in the same center and a third examination in another center. ADC variability was assessed in multiple organs by two readers using two-way mixed ANOVA, Bland-Altman plots, coefficient of variation (CoV), and the upper limit of the 95% CI on repeatability (RC) and reproducibility (RDC) coefficients.RESULTS: CoV of ADC was not influenced by other factors (center, reader) than the organ. Based on the upper limit of the 95% CI on RC and RDC (from both readers), a change in ADC in an individual patient must be superior to 12% (cerebrum white matter), 16% (paraspinal muscle), 22% (renal cortex), 26% (central and peripheral zones of the prostate), 29% (renal medulla), 35% (liver), 45% (spleen), 50% (posterior iliac crest), 66% (L5 vertebra), 68% (femur), and 94% (acetabulum) to be significant.CONCLUSIONS: This study proposes R&R limits above which ADC changes can be considered as a reliable quantitative endpoint to assess disease or treatment-related changes in the tissue microstructure in the setting of multicenter WB-MRI trials.KEY POINTS: • The present study showed the range of R&R of ADC in WB-MRI that may be achieved in a multicenter framework when a standardized protocol is deployed. • R&R was not influenced by the site of acquisition of DW images. • Clinically significant changes in ADC measured in a multicenter WB-MRI protocol performed with the same type of MRI scanner must be superior to 12% (cerebrum white matter), 16% (paraspinal muscle), 22% (renal cortex), 26% (central zone and peripheral zone of prostate), 29% (renal medulla), 35% (liver), 45% (spleen), 50% (posterior iliac crest), 66% (L5 vertebra), 68% (femur), and 94% (acetabulum) to be detected with a 95% confidence level.

Reference 
 
 
DOI scopus