Publication Details
Chiara Rossi, Diego Vidaurre, Costers, Lars, Fahimeh Akbarian, Mark Woolrich, Nagels, Guy, Jeroen Van Schependom

Communications Biology

Contribution To Journal


The brain dynamics underlying working memory (WM) unroll via transient frequency-specific large-scale brain networks. This multidimensionality (time, space, and frequency) challenges traditional analyses. Through an unsupervised technique, the time delay embedded-hidden Markov model (TDE-HMM), we pursue a functional network analysis of magnetoencephalographic data from 38 healthy subjects acquired during an n-back task. Here we show that this model inferred task-specific networks with unique temporal (activation), spectral (phase-coupling connections), and spatial (power spectral density distribution) profiles. A theta frontoparietal network exerts attentional control and encodes the stimulus, an alpha temporo-occipital network rehearses the verbal information, and a broad-band frontoparietal network with a P300-like temporal profile leads the retrieval process and motor response. Therefore, this work provides a unified and integrated description of the multidimensional working memory dynamics that can be interpreted within the neuropsychological multi-component model of WM, improving the overall neurophysiological and neuropsychological comprehension of WM functioning.

DOI scopus VUB