Publication Details
I. P. Radu, R. Li, A. Potocnik, T. Ivanov, D. Wan, S. Kubicek, N. I. Dumoulin Stuyck, J. Verjauw, J. Jussot, Y. Canvel, C. Godfrin, M. Mongillo, R. Acharya, A. Elsayed, M. Shehata, X. Piao, A. Pacco, L. Souriau, S. Couet, B. T. Chan, ne_list"J. Craninckx, Bertrand Parvais, A. Grill, S. Narasimhamoorthy, S. Van Winckel, S. Brebels, F. A. Mohiyaddin, G. Simion, B. Govoreanu

2021 Symposium on VLSI Circuits, VLSI Circuits 2021

Contribution To Book Anthology


Building quantum computers requires not only a large number of qubits with high fidelity and low variability, but also a large amount of analog and digital components to drive the qubits. Larger arrays of solid-state qubits with high fidelity and low variability require improvements in fabrication processes and array layout design co-optimized with the underlying hardware technology. Here we outline progress on 300mm fabrication of qubit devices and on classical CMOS components to enable the quantum system. We describe work on superconducting qubits and spin qubits in Si, both types of devices fabricated on 300mm experimental platforms and discuss challenges related to variability. Massive electrical characterization is key over wide temperature range is key to enabling system upscaling for QC.

DOI scopus